A Tutorial on Relevance Vector Machines for Regression and Classification with Applications

نویسندگان

  • Dimitris G. Tzikas
  • Liyang Wei
  • Aristidis Likas
  • Yongyi Yang
  • Nikolas P. Galatsanos
چکیده

Relevance vector machines (RVM) have recently attracted much interest in the research community because they provide a number of advantages. They are based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. As a consequence, they can generalize well and provide inferences at low computational cost. In this tutorial we first present the basic theory of RVM for regression and classification, followed by two examples illustrating the application of RVM for object detection and classification. The first example is target detection in images and RVM is used in a regression context. The second example is detection and classification of microcalcifications from mammograms and RVM is used in a classification framework. Both examples illustrate the application of the RVM methodology and demonstrate its advantages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support vector machines/relevance vector machine for remote sensing classification: A review

Kernel-based machine learning algorithms are based on mapping data from the original input feature space to a kernel feature space of higher dimensionality to solve a linear problem in that space. Over the last decade, kernel based classification and regression approaches such as support vector machines have widely been used in remote sensing as well as in various civil engineering applications...

متن کامل

Remote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery

Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES

Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only  considers both accuracy and generalization criteria in a single objective fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006